米6官网下载m6
按工作原理详解汽车主要传感器分类
发布时间: 2024-01-27 12:41:00 |   作者: 米6体育app官方下载

  汽车电子控制管理系统普遍遵循感知→控制→执行的工作流程。传感器作为感知单元获取系统的工作状态,控制单元处理传感器信号并计算输出控制指令,最终由执行单元完成相应动作。

  以电动助力转向系统(EPS)为例, 车辆运行过程中, 方向盘扭矩转角传感器监测方向盘转角及扭矩信息,轮速传感器监测车轮转速, 控制器(ECU)通过CAN总线实时获取传感器信号, 并根据特定逻辑实时处理信号,计算得到一个理想的助力力矩, 最后通过MOSFET控制电机,实现助力效果。

  汽车动力、底盘、车身、电气四大系统中,绝大部分的电子控制具备类似的工作原理,从感知、控制到执行环节,半导体器件无处不在,包括感知系统的传感器,控制环节的微控制器(MCU)、通信芯片(CAN/LIN 等)、模数转换器(A/D),执行环节的功率器件(MOSFET、IGBT、DCDC)等。其中传感器更是汽车的机会所在。

  汽车传感器可分为车辆感知、 环境感知两大类。动力、底盘、车身及电子电气系统中的传感器属于车辆感知范畴,ADAS 以及无人驾驶系统中引入的车载摄像头、毫米波雷达、激光雷达等属于环境感知范畴。本文重点介绍车辆感知传感器,环境感知传感器将在后续专题中介绍。

  按照工作原理,传感器主要可分为MEMS、磁、化学、温度四大类,我们统计传统汽油车上 MEMS 传感器超 50 个, 磁传感器超过 30 个,合计占比约 90%。

  传感器企业中,既有 Bosch、 Infineon、 NXP 这些巨头, 产品线齐全,产业链完整,从芯片设计、生产,到传感器产品的研发、配套,均具备很强的能力;也有 Allegro、Melexis、 ST、 NTK 等专注在部分领域或产业链环节,规模相对适中,同样具备很强的市场竞争力。

  据我们统计,目前一台中高配汽油车拥有超过 90 个传感器,单车价值量超过 2000元。其中动力传动系统 45-60 个左右,单车价值 1000-1700 元;底盘安全系统 30-40 个,单车价值 500-1000 元;车身系统超过 20 个,单车价值至少 200-600 元。

  动力系统:需要进排气压力类、冷却液/燃油/机油温度类、空气流量、曲轴/凸轮轴位臵及转速、爆震、氧传感器等多类型传感器同时监测发动机运作时的状态,我们估计所需传感器数量为 30-40 个。从价值量来看, 转速及位臵类磁传感器大多在 10-30 元范围,低中压 MEMS 15-30 元,热敏元件普遍 5-10 元,气体类、高温、高压类技术壁垒较高,比如尾气压差 GPF、排气温度传感器大约 50-60 元, 氧传感器大约 100-150 元。

  传动系统:涉及到离合器和变速器等复杂机械工况,需要离合器/变速器齿轮、变速器档位等位臵传感器、输入/输出轴转速传感器和液压油/冷却液温度传感器等多种类型的传感器,我们估计大约 15-20 个。

  底盘及车身安全系统:传感器遍布制动系统、转向系统、车身稳定系统及安全气囊系统中,我们估计共有 30-40 个。比如,加速度/角速度传感器大范围的应用于安全气囊系统、ESP 电动助力转向系统、惯导模块系统中。

  车身舒适性系统:包括雨量传感器、日照传感器、雨刷电机/车窗升降电机转子位臵传感器、空调系统传感器等,我们估计会超过 20 个,普遍单价较低。

  纵观整条产业链, 磁传感器芯片竞争格局十分集中,全球 5 家芯片供应商 Allegro、TDK、 Melexis、 Infineon、 NXP 几乎垄断市场;相比较而言, 全世界汽车磁传感器供应商相对分散, Bosch、 Delphi、 Conti、 Denso 等众多 Tier1 均有相应产品系列,与具体应用的汽车电子系统为 OEM 统一配套。

  对于磁传感器来说, 我们估计芯片的成本占比超过 60%(磁性元件通常与ASIC封装在一起),传感器供应商在产品端二次开发的空间被压缩,导致产品趋于同质化,因此与整车厂的配套关系尤为关键,其中产品的质量、价格、服务是制胜要素。

  我们认为芯片主导了磁传感器的发展的新趋势,集成度慢慢的升高:1)磁性元件与 ASIC集成:从多芯片到单芯片的集成封装;2)双传感器集成:EPS 等功能安全等级高的系统,对传感器冗余要求高,通常配备两个转矩、踏板位臵传感器,双传感器集成封装有助于缩小尺寸、降低成本。

  目前汽车上应用的磁传感器大多基于霍尔效应的原理,简称为霍尔传感器。主要用来测量运动量,如位臵、角度、速度、电流等, 分为霍尔开关、位臵霍尔(线D)、转速霍尔、电流霍尔及导航系统磁力计等类型。

  霍尔传感器的技术和产品应用已十分成熟, 平均每辆汽油车 35-50 个,单车价值量 500-1200 元。

  1、汽车电子配臵不断的提高,比如电动助力转向(EPS)、电子踏板、电动座椅等;

  2、 3D 霍尔的应用,基本的产品为旋钮式换挡器、 电子节气门阀位臵传感器、 EGR 阀位臵传感器等, 从高档车向经济型车不断渗透。

  全球主流的汽车霍尔传感器供应商主要有 Bosch、 Denso、 Continental、 Valeo 等众多 Tier1,普遍从 Melexis、 Infineon、 TDK-Micronas 等芯片厂商处采购磁传感器芯片,依据自己电控系统要求来设计传感器产品,最终大多以系统的形式供应给 OEM。而Sensata 则是一个特例,不以系统的形式配套,而是仅将单个传感器产品出售给 OEM。

  霍尔传感器的测量原理。霍尔效应是指当电流通过磁场中的霍尔元件时,磁场会对霍尔元件中的电子产生垂直于电子运动方向的作用力,使得在垂直导体与磁感线方向正负电荷聚集,形成霍尔电压。霍尔传感器的测量原理是运动切割磁感线引起磁场以及感应电流的变化,最后导致霍尔电压的变化,依据该变化来探测目标的运动状态变化。

  AMR、 GMR、 TMR 均基于磁阻原理,作为下一代磁传感器技术,凭借性能优势,渗透率正日益提升,主要磁传感器芯片厂商均有所布局。

  目前 AMR/GMR 技术已在轮速、方向盘转角/扭矩、电子节气门位臵、曲轴和凸轮轴转速等传感器领域得到规模化应用, 我们估计 TMR 有望于未来 2 年在电动助力转向(EPS)系统中开始切入。

  传感器厂商中, Conti 及 Denso 大力推广 xMR 技术, Conti 采购 NXP 芯片,将 AMR技术引入大部分产品线,而 Denso 依靠其在霍尔传感器领域丰富的产品经验,自制 AMR芯片以开发新一代传感器。目前来看, AMR 传感器配套的 OEM 以美系、日系为主。

  从芯片厂商的技术路线来看, xMR 领域布局各有侧重。NXP 在 AMR 领域优势显著,2015 年其 AMR 芯片市占率 70%, Allegro 及 Infineon 有小批量的 GMR 芯片出货,而TDK 依靠传统磁头业务 TMR 技术积淀深厚。

  TMR 传感器的性能提升十分显著,利用磁性多层膜材料的隧道磁电阻效应,与霍尔元件、 AMR、 GMR 相比, 优势突出:

  第三, 敏感性很强,规模上量后成本更低, 霍尔元件需要用钕铁硼等强力磁铁。

  1、 角度、转速、位臵类传感器:包括BLDC转子位臵、方向盘转角、轮速、节气门位臵、曲轴/凸轮轴角度等功能安全等级要求非常高的应用场合。

  2、 液位传感器:TMR 取代干簧管, 干簧管容易破裂、 一致性差、 成本比较高, TMR灵敏度较高、成本低、克服破碎问题。

  MEMS 传感器(Micro-Electro-Mechanical System) 是一个将微型机械结构、微型传感器、微型执行器、信号处理和控制电路以及接口、通信和电源模块都集成于芯片上的微机电系统,在汽车上大范围的应用于压力类以及运动类传感器。

  根据 Bosch 估计, 目前一辆汽车上安装有超过 50 个 MEMS 传感器, 我们估计单车价值量 500-1000 元。应用较多的是压力传感器、 加速度计、陀螺仪及磁力计等惯导系统传感器。这一些产品虽都采用微机电系统封装,但对应原理各不相同。

  MEMS 传感器的优势非常显著,高集成、小尺寸、低成本,已经实现全自动化控制,适合大规模批量生产, 1995 年由博世量产,目前在汽车行业已经获得大规模应用, 根据 IHS 估计, 汽车行业 MEMS 持续保持 3.3%的稳定增长水平。

  从行业格局来看, Bosch、 ST、 TI 在产品线布局、市场占有率方面都占据绝对领导地位;AKM 等磁传感器厂商从电子罗盘切入;MEMSIC、ADI则一直专注包括汽车加速度计、陀螺仪、磁力计在内的惯性模块 IMU;TDK 先后收购压力传感器公司 EPCOS、惯性传感器公司Invensense、 Tronics 等,补充 MEMS 产品线。

  与数字 IC 不同, MEMS 芯片对电特性和机械特性要求都很高, 对于传感器供应商来说,芯片能力和封装工艺都是核心技术。我们估计 MEMS 芯片与 ASIC 的成本合计占比超过 60%。同时, 封装需要仔细考虑温度、化学、应力等因素,对传感器性能也有比较大的影响。

  以 MEMS 压力传感器的制作的完整过程为例,需要在硅片上通过氮化硅薄膜热沉积、光刻、金属离子注入等工艺制备出压力敏感电阻与金属的互连引线后,在硅片背面进行各向异性湿法腐蚀,通过调整腐蚀速率和时间来控制压力敏感膜的厚度,最后用玻璃进行键合作为芯片的支撑架构。我们估计需要 7-8 层衬底,需要一层一层去做沉积、光刻、注入、腐蚀等过程,对温度控制精度、应力的要求非常高。而且衬底不仅是硅,还有金属、塑料、陶瓷、聚合物等。

  纵观整条产业链, 我们得知 MEMS 以及 ASIC 芯片的竞争格局相对集中,主要供应商有 Bosch、 Sensata、 NXP(Freescale)、 Denso、 Infineon、 ADI 等;传感器产品供应商更为分散,主流企业包括 Bosch、 Sensata、 Denso、 Conti、 Delphi、TE、 Amphenol等。其中 Bosch 具备全产业链能力, 采用 IDM 模式, 从晶圆厂到最终的汽车电子系统均自行生产;Sensata 具备芯片设计能力及传感器产品的开发制造能力,但采用Fabless 模式, 芯片全部由晶圆厂代工;其余的 NXP、 Infineon、 ADI、 ST 等芯片厂商则结合 IDM 及 Fabless 两种模式,根据产品线的不同灵活布局.

  压力 MEMS:大多基于硅的压阻效应,压力作用于硅薄膜引起 4 个电阻应变片电阻的变化,惠斯顿电桥输出与压力成正比的电压信号,适用于中低压场景,如发动机进气歧管、胎压检测系统 TPMS、真空度、油箱压力等。中、高压场合多采用陶瓷电容的技术路线。

  汽车 MEMS 压力传感器技术已十分成熟, 汽油车安装数量普遍在 15-20 个左右,单车价值 300-500 元,大多分布在在动力传动及排放系统。

  从市场需求看,欧美日等发达市场趋于平稳,相比较而言中国市场正迅速增加,主要有两个原因:一是 2020 年 1 月 1 日起所有乘用车强制安装 TMPS,要增加 4 个胎压传感器,单车价值 100-120 元左右, 二是国六排放标准于 2020 年在全国范围内推广,要增加 4 个左右压力传感器,单车价值 100-120 元左右。

  一辆乘用车普遍安装运动类传感器 10-15 个,平均单价 20 元,对应单车价值量200-300 元,大多数都用在监测车身姿态,如车身的加速度、角速度,为安全气囊、车身稳定控制(ESP)等汽车电子系统提供信号输入。

  汽车运动类传感器的需求将小幅增加, 我们估计复合增速不超过 5%, 主要受益全球尤其发展中国家,汽车安全气囊、 ESP 配臵比例提升以及功能逐渐完备,如侧面气囊的引入将增加 4 个加速度计和 2 个压力计,车外行人气囊的引入将增加 1 个压力计。

  目前车辆上常用 ESP 系统的 MEMS 加速度计、陀螺仪来进行惯性导航,精度较差,不足以满足无人驾驶的舒适性要求,精度亟待提升,同时为降低成本,集成度也慢慢变得高。

  1、 加速度计、陀螺仪、地磁力计集成封装,即从独立的 3 轴传感器到两两封装形成 6 轴电子罗盘 e-compass 或 6 轴 IMU 模块,再到共同集成为 9 轴 IMU模块,有些甚至还将压力传感器封装进来成为 10 轴 IMU;

  2、 与全球卫星导航系统 GNSS、激光雷达等共同融合用于无人驾驶系统中的车辆精确定位,精度要求高达厘米级别。根据 iHS Markit, L4/L5 级别 IMU 中对陀螺仪的零偏不稳定性要求范围在1°/h-0.1°/h,而单轴价格在 10-100 美元的水平(三轴 30-300 美元),考虑集成加速度计、部分厂商集成磁力计,我们估计 IMU 价格至少是百美元的量级。

  另一方面,战术级 IMU 从军事领域渗透至智能驾驶领域,但仍价格高昂,比如 ADI公司战术级 IMU 产品 ADIS16497 单价超过 1700 美元(>

  1000 只), 我们判断在规模化应用之前仍存在巨大的降价诉求。

  加速度 MEMS:基于牛顿第二定律,通过在加速过程中对质量块对应惯性力的测量来获得加速度值。采用电容式、压阻式或热对流原理,分为低 g(重力加速度)和高 g两大类,不同之处在于测量的加速度范围不同, ±2g~±24g等低/中 g 传感器用于主动悬架、ESP、侧翻、导航等非安全类系统, ±200g 等高 g 传感器用于气囊等安全系统。

  角速度 MEMS/陀螺仪:基于 Coriolis 力原理:一个物体在坐标轴中直线移动时,假设坐标系旋转,物体会受到一个垂直的力和垂直方向的加速度。MEMS 陀螺仪通常安装两个方向的可移动电容板,径向电容板加振荡电压迫使物体作径向运动,而当旋转时,横向电容板能够测量由于横向 Coriolis 运动带来的电容变化,从而计算出角速度。最多可测量 x/y/z 三轴角速度,用于侧翻、车身稳定控制系统、惯性导航 IMU 等。

  磁力计:运动过程中地磁场改变磁力计主磁场方向,从而引起导电薄膜内磁场方向与电流夹角值变化,而夹角的变化与电阻值呈线性关系,通过换算能确定与地磁场的相对位臵来做定位。磁力计主要与加速度计、陀螺仪一起,应用于惯性导航系统中(Dead Reckoning), 用于在 GPS 信号缺失时,经过测量与地磁场的相对位臵来判断汽车的航向角及姿态。磁力计基于磁效应,采用 MEMS 工艺,由于霍尔效应灵敏度难以达到一定的要求,普遍应用 AMR 来感应地磁场。

  汽车中一般设臵前氧和后氧两个氧传感器,单价在 150 元左右。汽车氧传感器具备极高的技术壁垒,全球市场主要被博世、 NTK 等外资垄断, 目前博世的市场占有率超过85%,本土传感器供应商集中在国内外的售后市场。

  前氧传感器检验测试混合排气中氧的含量, 并反馈给发动机 ECU 修正喷油量,控制混合气的空燃比在理论值附近,使三元催化达到效率最高。后氧传感器检测催化转化后混合气体中的氧含量,用来判定三元催化转化器是否失效。

  从成本结构看, 我们估计芯片采购大约 25 元,封装、组装后成本大约 50 元,对应传感器的毛利率在 70%左右。芯片的成本占比并不高,是传感器的核心壁垒。以 FAE的陶瓷芯片为例,需要 12 层的加工工艺,高温烧制工艺技术要求极高。

  氮氧化物传感器主要使用在在柴油车后处理 SCR 系统(Selective Catalytic Reduction System),用于检测尾气催化还原之后 NOx的含量是不是满足排放要求。

  NOx 传感器,与氧传感器类似,核心壁垒在陶瓷芯片,目前全球前装市场被大陆、NTK、博世等外资垄断,每个车上 1 只,单价 600 元左右,我们估计毛利率超过 50%。

  氮氧传感器长期工作在高温恶劣工况下, 每 6000 小时要换掉, 对应商用车平均1-2 年,乘用车平均 8-10 年。

  国内传感器供应商集中在售后市场,其中温州百岸引入德国 KEKO 的高温共烧陶瓷(High Temperature co-fired Ceramic, HTCC)生产设备,并与中国科学院和上海交通大学合作, 目前已成长成为全世界第一的 NOx 传感器后市场供应商。

  汽车上普遍用热敏电阻来测量温度,可分为 PTC 和 NTC 两类,汽油车单车用量 5-10个,纯电动汽车在 15-20 个, 主要企业包括 TDK(EPCOS)、 Amphenol、 TE 等,普遍具备热敏电阻自制能力,国内企业华工高理、汇北川同样进入前装体系,并批量供货,但热敏电阻采购外资为主,如 Murata、 Semitec。

  NTC:电阻随温度上升而降低,主要用来测量气体、液体、环境和温度,包括冷却液、进气管、空调蒸发器出口、车内外等温度检测, 基本在 200℃以下,平均单价在 5-10 元。

  PTC:超过一定温度时,电阻明显增大, 大多数都用在过流保护、温度限制、加热等场景,如电机保护传感器,单价与 NTC 相当。

  面对高温场合,如发动机排气歧管、三元催化器温度高达 800℃以上, 传统的热敏电阻不足以满足要求,通常采用铂电阻温度传感器进行测量,我们估计单价在 50 元左右,汽油、 柴油车单车用量分别为 1、 4 个, 全球市场基本被 Sensata、 NTK、 Denso 垄断,国内企业尚不具备前装大批量供货能力。

  与汽油车相比,纯电动汽车的动力系统更加简单,电气化程度更高,传感器的类型和数量均有不小的变化。

  总的来说,我们估计动力传动系统的传感器数量从 45-60 个减少至 20-35 个, 单车价值量从 1000-1700 元降至 300-800 元,大规模放量后,有可能降至 500 元以下,主要为电流和温度两大类传感器。

  1)磁传感器:发动机、变速器中 10-20 个位臵/转速类传感器基本不再需要, BEV新增电流传感器 10 个左右。

  2) MEMS:发动机、变速器中 10 多个压力 MEMS 不再需要, 底盘系统中真空助力泵压力传感器 BEV 也不需,而加速度、角速度等惯性传感器不受影响。

  3)化学类:汽油发动机中氧传感器、爆震传感器、 空气/燃料流量传感器等 5 个左右高价值量的化学类传感器不再需要, 总价值量超过 300 元。

  4)温度:发动机、变速器中有 5-10 个 NTC, 而 BEV 中电池包 10-20 个 NTC,电机 1-2 个 NTC;而高温铂电阻传感器不再需要。

  电动汽车上电流传感器用于测量电气系统的电流大小,单车用量 10 个左右, 我们估计目前总价值 300-400 元(小批量单价高)。

  电流传感器可分为两种类型:一种是霍尔式电流传感器,测量电池包、电机控制器的电流,单价较高,单车用量 5 个左右;另一种是电流互感器 CT,测量 OBC、 DCDC的电流,单价较低,单车用量 6 个左右。

  从竞争格局看, Lem、 Melexis、 Allegro、 Honeywell 是电动汽车电流传感器的主流竞争者,国内的电动汽车上的霍尔式电流传感器大部分采用莱姆 Lem,还有部分采用Allegro、霍尼韦尔 Honeywell 等国外厂商的产品。而 TMR 领域将成为电流传感器下一个竞争领域,各厂商都处于积极布局的阶段。

  开环式由磁芯、霍尔元件和放大电路构成,原边导体流过电流时,磁芯将导体周围磁场聚集在开口处,开口处的霍尔元件产生同比例的电压信号,放大后进行测量;而闭环在开环基础上多了副边的补偿绕组,放大电流会将电流信号再给到副边绕组,产生与原边电流磁场大小相同、方向相反的磁场,通过这一负反馈使磁通量为零。

  闭环与开环相比,优点在于响应时间更快、带宽更宽,而且不受磁芯非线性和磁滞效应影响,线性度和精度更优越,精度可达 0.2%。缺点在于需要缠绕副边绕组,成本高,且线圈缠绕对生产要求高。

  霍尔电流传感器与电流互感器 CT 相比优势体现在各个方面:1) CT 只能测量交流电,测量频段比霍尔式窄;2)交流 CT 如果开路会产生高电压,有可能击穿绝缘电路,因此二次侧必须短接;而霍尔式不必短接;3) CT 易受电流畸变、多次谐波、非正弦波等影响,精度低于霍尔式;4)霍尔式线性度、动态性能、响应时间、体积上都有优势。霍尔式逐步取代 CT 的份额是一大趋势。

  TMR 技术在磁传感器领域兴起变革已成定局,电流传感器也不例外。TMR 基于磁阻效应的原理测量电流, 不仅体积大大减小,而且带宽高,响应时间快、温度特性好。我们认为电机控制器、车载充电机等功率模块向 SiC 路线转变是长期趋势。

  传统的Si 基 MOSFET 适宜于大多数频率范围的低功率控制场合,而 IGBT 由于开关频率只有10k,仅适用于低频高压范围。而 SiC Mosfet 开关频率高达 100-200k, 适宜于较高频段的全功率范围,而且具备高功率密度、低功率损耗及良好的高温稳定性。由于 SiC 功率模块的开关频率是传统 IGBT 10-20 倍,对电流传感器的响应速度要求很高,霍尔式无法满足规定的要求,所以 SiC 路线与 TMR 将成为相辅相成的长期趋势。

  比利时研究机构IMEC计划打造下一代感测器——特别是 雷达感测器 ,以及可在本地撷取有效资讯的装置,甚至使其成为学习机器。   IMEC目前已经与汽车雷达业者 英飞凌 科技(Infineon Technologies)携手合作,以28nm CMOS打造79GHz产品。IMEC感知系统计划总监Wim van Thillo表示,目前,该研究机构打算采用更小的波长,并在其感测器后端增添 机器学习 功能。   Van Thillo说,他的研究团队正致力于开发140GHz晶片。在此频率范围下采用2.2mm波长,该研究团队打算在1mm2晶片上实现较4GHz更高的频宽。   由于雷达可内建于天线晶片(antenna-on-ch

  传感器 是汽车感知周围的环境的硬件基础,在实现无人驾驶的各个阶段都必不可少。 无人驾驶离不开感知层、控制层和执行层的相互配合。摄像头、雷达等传感器获取图像、距离、速度等信息,扮演眼睛、耳朵的角色。 控制模块分析处理信息,并进行判断、下达指令,扮演大脑的角色。车身各部件负责执行指令,扮演手脚的角色。而环境感知是这一切的基础, 因此传感器对于无人驾驶不可或缺。 三大重要传感器 摄像头:智能驾驶之慧眼 车载摄像头是实现众多预警、识别类ADAS功能的基础。在众多ADAS功能中,视觉影像处理系统较为基础,对于驾驶者也更为直观,而摄像头又是视觉影像处理系统的基础, 因此车载摄像头对于无人驾驶必不可少。 摄像头可实现的ADAS功

  融合 /

  为加快我国卫星电源分系统的数字化设计.充足表现数字电路体积小、重量轻、功耗低、适 应性强和可靠性高等优点,提高电源分系统的电能重量比,本文以DSl8820作为温度传感器,并采用单片机控制管理系统进行数据的采集、计算、调节及V-T曲线控制。     卫星电源系统主要用来为整个卫星的正常运行提供稳定的电源。它是卫星电能产生、储存、变换、调节、传输分配和管理的重要分系统。其基本功能是通过物理和化学过程将太阳的光能、核能或化学能转化为电能,并根据自身的需求对电能进行存储、调节和变换,然后向卫星其它各分系统不间断供电。我国的卫星大都采用太阳能/蓄电池供电系统。蓄电池充电终压控制采用电压一温度补偿法,即V-T控制。蓄电池温度传感器传统上一般选用

  新能源汽车(NEV)一直被视为未来汽车的发展的新趋势。《巴黎协定》的 碳中和目标 是在 2035 年之前减排 20%,随着这一期限的逼近,快速普及新能源汽车势在必行。在全力发展电动交通方面,中国取得了举世瞩目的成就——仅在 2021 年就达到了近 300 万 NEV的销售量 。预计到 2035 年,中国 60% 的汽车将会是 电动汽车 。 当下,全球都在推广更加可持续的出行方式;大势所趋,中国也在加速顺应。要想完全实现电动交通的愿景,整个业内的ECO需要克服重重障碍,重点是加紧建设快充基础设施,突破电池限制,以及实现互操作性。 快充网络 中国能够占据市场领头羊,原因之一就是其相对完善的公共充电网络。目前,中国已

  微软正式公开宣布了HoloLens 2的一个新的 移动平台 功能,旨在让这个增强现实头显在汽车等地方工作。它解决了长期以来HoloLens存在的一个问题,即移动中的环境会使头显的传感器混乱。这项改进是与大众汽车公司合作开发的,大众汽车公司一直在尝试在其车辆中将该头显的技术整合进汽车的抬头显示器。 正如 微软 的博文所解释的那样,其增强现实头显使用相机传感器和惯性测量单元(通常包括加速计和陀螺仪)的组合来跟踪运动。但是在汽车里,这两个传感器的读数可能会发生冲突;头显感觉到运动,但看到的却是静态环境。换句话说,它正在晕车(不要笑,事实如此)。 这就是大众汽车在开始调查使用增强现实头显的技术来教司机如何更快地在赛道上行驶后发现的。它

  行驶中发挥作用 /

  意法半导体(ST)预期2008年销售额增长率可达两位数。但由于市场可见度不佳,该公司仍就保持谨慎。意法半导体总裁兼首席执行官Carlo Bozotti强调指出,欧美汽车市场面临压力,而无线年第二季度,意法半导体宣布所有领域都实现了同比增长,工业与其它(增长20%)和电信(增长19%)表现出色,其次是电脑与消费领域分别增长12%和11%,汽车领域增长7%。从环比来看,电信和工业领域均增长14%,处于前列。消费领域增长11%,汽车增长5%。电脑领域实际上与2008年第一季度持平。 Bozotti在其讲话中表示,预计今年营业收增长情况将非常好。他说:“我们的营业收入和未交货订单让我们对前景充满信

  汽车给我们大家带来了舒适便捷,但同时也对环境造成了明显伤害。如何能够解决汽车存在所带来的矛盾呢?厂家想到了开发新能源车型,而以电能作为能源驱动车辆成为了发展的新趋势。不过,纯电动车的商业化之路还很遥远,高昂的成本和不够稳定的电池组成了阻碍电动车发展的两大瓶颈。为了不让新能源技术的研发停滞,采用汽油发动机和电动机共同驱动车辆的混合动力系统成为了厂商竞相关注的新课题。 我们一般所指的混合动力车型就是采用汽油发动机加电动马达作为动力来源的车型,很常见的就是丰田普锐斯。混合动力车型使用的汽油发动机与普通车型没有一点区别,不过其安装的一到两个电动马达却具有高扭矩输出的特点。位于车辆底部或后部的电池组向电动马达输送能力,带

  据悉,美国大型汽车制造商和供应商再次向国会施压,要求解决全球半导体芯片短缺的问题,这已经限制了全世界汽车的生产。 由于芯片供应短缺,包括通用汽车、福特汽车和丰田汽车在内的汽车制造商今年都削减了产量,导致墨西哥汽车工业第一季度产量下降12%,出口下降14%。 汽车制造商警示,晶片短缺可能会引起今年美国生产的汽车减少130 万辆,且生产中断至少还要6 个月之久。上周,福特和Stellantis 都宣布与晶片相关的减产措施,福斯汽车周一宣布墨西哥场需继续减产。 美国参议院小组委员会将听取汽车业相关组织的证词,汽车业敦促政府应采取行动解决成熟制程晶片的生产问题,同时,汽车业也支持国会动用数百亿美元提高美国半导体产能的计划,及新的税

  数字图像处理(第四版)Digital Image Processing,Fourth Edition (Rafael C.Gonzalez, Richard E.Woods)

  网络原理及应用 (唐宏)

  技术 (范茂军)

  有奖直播 是德科技 InfiniiMax4.0系列高带宽示波器探头新品发布

  MPS电机研究院 让电机更听话的秘密! 第一站:电机应用知识大考!跟帖赢好礼~

  ADI世健工业嘉年华——深度体验:ADI伺服电机控制方案

  功放机电流声很大是哪里出问题你首先要分清楚电流声是从哪来的,是由电脑产生的呢还是音频线造成的,或是音响本身产生的。区分的办 ...

  功放机怎么连接电视功放机连接电视的操作方法如下:1、需要有一根同轴线或者一条光纤线。将同轴线(或光纤线)接到电视机和功 ...

  功放机的原理及构造功放俗称“扩音机”他的作用就是把来自音源或前级放大器的弱信号放大,推动音箱放声。一套良好的音响系统功放的 ...

  功放机的混响怎么调一般来讲混响是回音而不是真正的混响。由于房间大小、音量高低、声学环境、男声女声等原因所以没固定的调法。 ...

  站点相关:嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科

栏目 产品 案例 导航